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Abstract

Motivated by the notion of Kuratowski convergence of sequences of closed set [20]. In this
paper, we extend the concept of Kuratowski convergence to Kuratowski ideal convergence
with respect to intuitionistic fuzzy normed space for a double sequence of closed sets and
rectify some properties for this new defined double sequence spaces.
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1 Introduction

Theory of fuzzy sets was studied and introduced by Zadeh [21] in 1965. In past years, the fuzzy
theory has emerged as the most active area of research in many branches of mathematics and
engineering. One of the most important problems in fuzzy topology is to obtain an appropriate
concept of fuzzy metric space. Park [13] discussed the notion of intuitionistic fuzzy(IF-) metric
spaces which is based both on the idea of IFS which was introduced by Atanassov [1] and the
concept of a fuzzy metric space by George and Veeramani [6]. The notion of intuitionistic fuzzy
norm space [15],certainly there are some situations where the ordinary norm does not work and
the concept of intuitionistic fuzzy norm seems to be more suitable in such cases, that is, we can
deal with such situations by modelling the inexactness of the norm in some situations.

The statistical convergence of a sequences came into existence in 1951 by Fast [4]. When
difficulties comes in series summation then this new concept was introduced. In this new idea
of convergence of a sequences was that the majority of elements converges and we do not
care about what is going on with other elements. In 2006, M. Burgina and O. Duman [11]
studied that the sequences come from real life sources, such as computation and measurement
do not permit in a ordinary case, to test that they converge or statistically converge in the
mathematical sense. Later on it was analysed by Friday [5] from the sequence point of view
and linked it with the summability theory. I-convergence is a generalization of the statistical
convergence. It was studied at the initial stage by Kostyrko, Salat and Wilezynski [8]. Further
it was studied by Salat [17]. Salat, Tripathy and Ziman [18], Demirci [3], Khan et.al [7] and
many others [12, 16]. Kumar and Kumar [9] studied the concepts of I-convergence and I∗-
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convergence for sequences of fuzzy numbers.

In 1902, Painleve introduced the concepts of inner and outer limits for a sequence of sets
in his lecture on analysis at the University of Paris; set convergence was defined as the equality
of these two limits. This convergence has been popularized by Kuratowski in his famous book
Topologie [10] and thus, often called Kuratowski convergence of sequences of sets.

2 Definitions and Prelimineries

We first recall the concepts of an ideal and a filter of sets :

Definition 2.1. [8] If N×N be the set of Cartesian product of natural numbers, then a family
of subsets I of N× N is called an ideal in N× N if

(a) φ ∈ I,

(b) A,B ∈ I ⇒ A ∪B ∈ I,

(c) For each A ∈ I and B ⊆ A, we have B ∈ I.

Remark 2.1. An ideal I is said to be non-trivial if I 6= 2N×N.

Definition 2.2. [8] A non-empty set F ∈ 2N×N is said to be filter in N× N if

(a) φ /∈ F ,

(b) For A,B ∈ F , we have A ∩B ∈ F ,

(c) For each A ∈ F with A ⊆ B, we have B ∈ F .

The following proposition expresses a relation between the notion of an ideal and filter :

Corollary 2.1. For each ideal I, there is a filter F(I) associated with I defined as:

F(I) = {M ⊆ N× N : N× N−M ∈ I}.

In 2008, Das et al. [2] gave the notions of ideal convergence of double sequences in real line
as well as in general metric spaces. They firstly investigate the porosity and category position
of bounded ideal convergent double sequences.

Definition 2.3. A nontrivial ideal I of N× N is called strongly admissible if k × N and N× k
belong to I for each k ∈ N.

It is easily see that a strongly admissible ideal is admissible also.

Let I0 = {K ⊂ N × N : (∃m(K) ∈ N)(i, j ≥ m(K) ⇒ (i, j) /∈ K)}. Then I0 is a nontrivial
strongly admissible ideal and clearly an ideal I is strongly admissible if and only if I0 ⊂ I.

An admissible ideal I ⊂ 2N×N is said to be property (AP), if every countable family of
mutually disjoint sets {Aij} belonging to I, there exists a countable family of sets {Bij} of sets
such that each symmetric difference Aij∆Bij is finite set for (i, j) ∈ N×N and B =

⋃
ij=1

Bij ∈ I.

Hence Bij ∈ I for each (i, j) ∈ N× N.
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Definition 2.4. An element ξ ∈ X is said to be I-limit point of a sequence x = (xij) if there is
a set M = {m11 < m12 < ... < mkl < ...} ⊂ N× N such that M /∈ I and lim

ij→∞
xij = ξ. The set

of all I-limit points of a sequence x will be denoted by I(
∧
x).

Definition 2.5. An element ξ ∈ X is called I-cluster point of a sequence x = (xij) if for each
ε > 0, we have a set {(i, j) ∈ N : d(xij , ξ) < ε} /∈ I. The set of all I-cluster points of a sequence
x will be denoted by I(Γx).

Let Lx denote the set of all limit points ξ of the double sequence xij ; i.e., ξ ∈ L§ if there
exists an infinite set K = {k11 < k12 < ...} such that xkmn → ξ as (m,n)→∞.
Clearly, for an admissible ideal I we have I(

∧
x) ⊆ I(Γx) ⊆ Lx.

Lemma 2.1. [18] K be a compact subset of X. Then we have K∩I(Γx 6= φ) for every x = (xij)
with {(i, j) ∈ N× N : xij ∈ K} /∈ I.

The concept of I-limit superior and inferior were studied and introduced by Demirci [3] as
follows :
Let I be an admissible ideal and x = (xij) be a real number sequence.

I − lim sup
i,j→∞

xij :=

{
supBx if Bx 6= φ,

−∞ if Bx = φ,

I − lim inf
i,j→∞

xij :=

{
lim inf Ax if Ax 6= φ,

∞ if Ax = φ,

where

Ax := {a ∈ R : {(i, j) ∈ N× N : xij < a} /∈ I} and

Bx := {b ∈ R : {(i, j) ∈ N× N : xij > b} /∈ I}

Lemma 2.2. [3] If β = I − lim sup
i,j→∞

xij is finite, then for every ε > 0,

{(i, j) ∈ N× N : xij > β − ε} /∈ I and {(i, j) ∈ N× N : xij > β + ε} ∈ I.
Conversely, if the above equations holds for every ε > 0 then β = I − lim sup

i,j→∞
xij

The dual statement for I − lim inf is as follows :

Lemma 2.3. [3] If α = I − lim inf
i,j→∞

xij is finite, then for every ε > 0,

{(i, j) ∈ N× N : xij < α+ ε} /∈ I and {(i, j) ∈ N× N : xij < α− ε} ∈ I.
Conversely, if the above equations holds for every ε > 0 then α = I − lim inf

(i,j)→∞
xij.

Definition 2.6. [7]A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is said to be a continuous
t-norm if it satisfies the following conditions:
(a) ∗ is associative and commutative,
(b) ∗ is continuous,
(c) a ∗ 1 = a for all a ∈ [0, 1],
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].
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Example 2.1. Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b = min(a, b).

Definition 2.7. A binary operation � : [0, 1]×[0, 1] −→ [0, 1] is said to be a continuous t-conorm
if it satisfies the following conditions:
(a) � is associative and commutative,
(b) � is continuous,
(c) a � 0 = a for all a ∈ [0, 1],
(d) a � b ≤ c � d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Example 2.2. Two typical examples of continuous t-conorm are a � b = min(a + b, 1) and
a � b = max(a, b).

We define the notion of intuitionistic fuzzy normed spaces with the help of continuous t-
norms and continuous t- conorms as a generalization of fuzzy normed space due to Saadati and
Vaezpour [14].

Definition 2.8. [7]The five-tuple (X,µ, ν, ∗, �) is said to be an intuitionistic fuzzy normed
space(for short, IFNS) if X is a vector space, ∗ is a continuous t-norm, � is a continuous
t-conorm and µ, ν are fuzzy sets on X × (0,∞) satisfying the following conditions for every
x, y ∈ X and s, t > 0 :
(a) µ(x, t) + ν(x, t) ≤ 1,
(b) µ(x, t) > 0,
(c) µ(x, t) = 1 if and only if x = 0,
(d) µ(αx, t) = µ(x, t

|α|) for each α 6= 0,

(e) µ(x, t) ∗ µ(y, s) ≤ µ(x+ y, t+ s),
(f) µ(x, .) : (0,∞)→ [0, 1] is continuous,
(g) lim

t→∞
µ(x, t) = 1 and lim

t→0
µ(x, t) = 0,

(h) ν(x, t) < 1,
(i) ν(x, t) = 0 if and only if x = 0,
(j) ν(αx, t) = ν(x, t

|α|) for each α 6= 0,

(k) ν(x, t) � ν(y, s) ≥ ν(x+ y, t+ s),
(l) ν(x, .) : (0,∞)→ [0, 1] is continuous,
(m) lim

t→∞
ν(x, t) = 0 and lim

t→0
ν(x, t) = 1.

In this case, (µ, ν) is called an intuitionistic fuzzy norm.

Example 2.3. Let (X, ‖.‖) be a normed space. Denote a ∗ b = ab and a � b = min(a+ b, 1) for
all a, b ∈ [0, 1] and let µ0 and ν0 be fuzzy sets on X2 × (0,∞) defined as follows:

µ0(x, t) =
t

t+ ‖x‖
, and ν0(x, t) =

‖x‖
t+ ‖x‖

for all t ∈ R+. Then (X,µ, ν, ∗, �) is an intuitionistic fuzzy normed space.

Definition 2.9. Let (X,µ, ν, ∗, �) be an IFNS. For t > 0, we define open ball B(x, r, t) with
center x ∈ X and radius 0 < r < 1, as

B(x, r, t) = {y ∈ X : µ(x− y, t) > 1− r, ν(x− y, t) < r}.
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Definition 2.10. Let (X,µ, ν, ∗, �) be an IFNS. Then a sequence x = (xk) is said to be conver-
gent to L ∈ X with respect to the intuitionistic fuzzy norm (µ, ν) if, for every ε > 0 and t > 0,
there exists k0 ∈ N such that µ(xk − L, t) > 1 − ε and ν(xk − L, t) < ε for all k ≥ k0. In this
case we write (µ, ν)− limx = L.

Definition 2.11. Let (X,µ, ν, ∗, �) be an IFNS. Then a sequence x = (xk) is said to be a Cauchy
sequence with respect to the intuitionistic fuzzy norm (µ, ν) if, for every ε > 0 and t > 0, there
exists k0 ∈ N such that µ(xk − xl, t) < ε and ν(xk − xl, t) < ε for all k, l ≥ k0.

3 Kuratowski Statistical and Kuratowski I-Convergence

In this section, we recall some basic properties of Kuratowski convergence. We use the following
notation:

N := {N ⊆ N : N\N finite}
:= {subsequences of N containing all n beyond some n0}

N ] := {N ⊆ N : N infinite} = {all subsequences of N}.

We write lim
n→∞

when n → ∞ as usual in N, but lim
n∈N

in this case of convergence of a

subsequence designated by an index set N in N ].

Definition 3.1. For a sequence (En) of closed subsets of X; the outer limit is the set

lim sup
n→∞

En := {x|∀ε > 0,∃N ∈ N ], ∀n ∈ N : En ∩B(x, ε) 6= φ}

:= {x|∃N ∈ N ], ∀n ∈ N, ∃xn ∈ En : lim
n∈N

xn = x},

while the inner limit is the set

lim inf
n→∞

En := {x|∀ε > 0,∃N ∈ N ,∀n ∈ N : En ∩B(x, ε) 6= φ}

:= {x|∃N ∈ N ,∀n ∈ N, ∃xn ∈ En : lim
n∈N

xn = x}

The limit of a sequence (En) of closed subsets of X exists if the outer and inner limits sets
are equal, i.e,

lim
n→∞

En = lim inf
n→∞

En = lim sup
n→∞

En.

Talo et al. [19] introduced Kuratowski statistical convergence of sequences of closed sets. The
statistical outer limit and statistical inner limit of a sequence En of closed subsets of X are
defined by

st− lim sup
n→∞

En := {x|∀ε > 0, ∃N ∈ S],∀n ∈ N : En ∩B(x, ε) 6= φ},
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st− lim inf
n→∞

En := {x|∀ε > 0,∃N ∈ S,∀n ∈ N : En ∩B(x, ε) 6= φ},

where,
S := {N ⊆ N : δ(N) = 1} and S] := {N ⊆ N : δ(N) 6= 0}.

The statistical limit of a sequence (En) exists if its statistical outer and statistical inner limits
coincide; ie,

st− lim
n→∞

En = st− lim inf
n→∞

En = st− lim sup
n→∞

En.

Further, Talo and Sever [20] introduced Kuratowski I-convergence of sequences of closed sets.

Definition 3.2. I-outer limit and I-inner limit of a sequence En of closed subsets of X are
defined by

I − lim sup
n→∞

En := {x|∀ε > 0, ∃N ∈ N ]
I , ∀n ∈ N : En ∩B(x, ε) 6= φ}

and
I − lim inf

n→∞
En := {x|∀ε > 0,∃N ∈ NI ,∀n ∈ N : En ∩B(x, ε) 6= φ}

where NI := {N ⊂ N : N\N ∈ I} = F(I) and NI] := {N ⊆ N : N /∈ I}.

The I- limit of a sequence (En) exists if its statistical I-outer and I-inner limits coincide.
In this situation we say that the sequence of its is Kuratowski I-convergent and we write

I − lim
n→∞

En = I − lim inf
n→∞

En = I − lim sup
n→∞

En.

Moreover, it’s clear from the inclusion NI ⊂ N ]
I that

I − lim inf
n→∞

En ⊆ I − lim sup
n→∞

En

so that in fact, I − limn→∞En = E if and only if

I − lim sup
n→∞

En ⊆ A ⊆ I − lim inf
n→∞

En

4 Kuratowski IF-I-Convergence

In this section, we introduce Kuratowski IF-I-convergence of double sequences of closed sets.
We use the analogous idea employed by Kuratowski [10] and Talo et al. [19] for convergence and
statistical convergence of double sequences closed sets. Let us consider

NI := {N ⊆ N× N : N× N−N ∈ I} = F(I) and N ]
I := {N ⊆ N× N : N /∈ I}

Firstly, we define the I analogues for outer and inner limits of a double sequence of closed
sets.

6
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Definition 4.1. The IF − I-outer limit and IF − I-inner limit of a double sequence (Aij) of
closed subsets of X are defined as follows:

I(µ,ν) lim
i,j→∞

supAij := {x|∀ε > 0, ∃N ∈ N ]
I ,∀(i, j) ∈ N : Aij ∩ Bx(r, t) 6= ∅},

and
I(µ,ν) lim

i,j→∞
inf Aij := {x|∀ε > 0,∃N ∈ NI ,∀(i, j) ∈ N : Aij ∩ Bx(r, t) 6= ∅},

The I(µ,ν)-limit of a sequence (Aij) exists if its IF − I− outer and IF − I-inner limits
coincide. In this situation, we say that the double sequence of sets is Kuratowski IF-I-convergent
and we write

I(µ,ν) lim
i,j→∞

inf Aij = I(µ,ν) lim
i,j→∞

supAij = I(µ,ν) lim
i.j→∞

Aij

Moreover, it is clear from the inclusion NI ⊂ N ]
I that

I(µ,ν) lim
i,j→∞

inf Aij ⊆ I(µ,ν) lim
i,j→∞

supAij

so that in fact, I(µ,ν) − lim
i,j→∞

Aij = A if and only if

I(µ,ν) lim
i,j→∞

supAij ⊆ A ⊆ I(µ,ν) lim
i,j→∞

inf Aij

Remark 4.1. I(µ,ν) − lim
i,j→∞

Aij = A if and only if the following conditions are satisfied:

(i) for every x ∈ A and for every ε > 0 we have {(i, j) ∈ N× N : Bx(r, t) ∩Aij 6= ∅} ∈ F(I);

(ii) for every x ∈ X A there exists ε > 0 such that {(i, j) ∈ N×N : Bx(r, t) ∩Aij = ∅} ∈ F(I)

We give some examples of ideals and corresponding IF-I-convergence.

(I) Put I0 = {∅}. I0 is minimal ideal in N×N. Then for a sequence (Aij) of closed sets we
have

I(µ,ν)0 − lim
i,j→∞

inf Aij =
∞⋂

i,j=1

Aij and I(µ,ν)0 − lim
i,j→∞

supAij = cl
∞⋃

i,j=1

Aij ,

where cl(A) denotes the closure of the set A in Intuitionistic fuzzy normed space (X,µ, ν, ∗, �).
A sequence (Aij) is Kuratowski- IF − I0-convergent if and only if it is constant set.

(II) Take for I the class If of all finite subsets of N× N. Then If is a non-trivial admissi-
ble ideal and Kuratowski IF−If convergence coincides with the usual Kuratowski I-convergence.

(III) Denote by Iδ the class of all A ⊂ N×N with δ(A) = 0. Then Iδ is non-trivial admissible
ideal and Kuratowski IF−Iδ-convergence coincides with the Kuratowski statistical convergence.

Note that if I is an admissible, then If ⊆ I. It is clear that
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lim
i,j→∞

inf Aij ⊆ I − lim
i,j→∞

inf Aij ⊆ I(µ,ν) − lim
i,j→∞

inf Aij ⊆ I(µ,ν) − lim
i,j→∞

supAij

⊆ I − lim
i,j→∞

supAij ⊆ lim
i,j→∞

supAij .

Hence every Kuratowski convergent sequence is Kuratowski-IF-I-convergent, i.e.,

lim
i,j→∞

Aij = A implies I(µ,ν) − lim
i,j→∞

Aij = A.

But, the converse of this claim does not hold in general.

Example 4.1. Let X = R×R. We decompose the set N×N into countably many disjoint sets

Nij = {2ij−1(2s− 1) : s ∈ N}, (i, j = 1, 2, 3, .......).

It is obvious that N×N =
∞⋃

i,j=1
Nij and Nij ∩Nmn = ∅ for (i, j) 6= (m,n). Denote by I the

class of all A ⊆ N× N such that A intersects only a finite number of Nij . It is easy to see that
I is an admissible ideal. Define (Aij) as follows: for ij ∈ Nij we put

Aij = {x ∈ R× R :
1

ij + 1
≤ x ≤ 1

ij
}(i, j = 1, 2, 3, ......).

Let ε > 0, t > 0. Choose p ∈ ×N× N such that 1
p < ε. Then

{(i, j) ∈ N× N : Aij ∩ B0(r, t) = ∅} ⊆ N1 ∪N2 ∪ .......... ∪Np.

Thus

{(i, j) ∈ N× N : Aij ∩ B0(r, t) = ∅} ∈ I i.e; {(i, j) ∈ N× N : Aij ∩ B0(r, t) 6= ∅} ∈ F(I).

So I − lim
i,j→∞

Aij = 0 and hence I(µ,ν) − lim
i,j→∞

Aij = 0.

However
lim
i,j→∞

inf Aij = ∅ and lim
i,j→∞

supAij = {x ∈ R× R : x ≤ 1}.

Therefore (Aij) is not Kuratowski convergent.

Theorem 4.1. Let (Aij) be a sequence of closed subsets of X(IF −NS). Then

I(µ,ν)− lim
i,j→∞

inf Aij =
⋂

Nij∈N]
I

cl
⋃

(i,j)∈Nij

Aij and I(µ,ν)− lim
i,j→∞

supAij =
⋂

Nij∈NI

cl
⋃

(i,j)∈Nij

Aij .

Proof. We prove only the first equality because the proof of the second one is similar to the first
one. Let x ∈ I(µ,ν)− lim

i,j→∞
inf Aij be arbitrary and Nij ∈ N ]

I be arbitrary. For every ε > 0, t > 0

there exists N11 ∈ NI such that for every (i, j) ∈ N11

Aij ∩ Bx(r, t) 6= ∅.
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From Lemma 2.2 we have Nij ∩ N11 /∈ N ]
I . So there exists n0 ∈ Nij ∩ N11 such that

Aij0 ∩ Bx(r, t) 6= ∅. Therefore, ( ⋃
ij∈Nij

Aij
)
∩ Bx(r, t) 6= ∅.

This means that x ∈ cl
⋃

ij∈Nij

Aij . This holds for any Nij ∈ N ]
I .

Consequently, x ∈
⋂

Nij∈N]
I

cl
⋃

ij∈Nij

Aij .

For the reverse inclusion, suppose that x /∈ I(µ,ν) − lim
i,j→∞

inf Aij . Then, there exists ε > 0, t > 0

such that
Nij = {(i, j) ∈ N× N : Aij ∩ Bx(r, t) = ∅} /∈ I,

i.e; Nij ∈ N ]
I . Thus ( ⋃

(i,j)∈Nij

Aij
)
∩ Bx(r, t) = ∅.

This means that x /∈ cl
⋃

(i,j)∈Nij

Aij . This completes the proof. �

Remark 4.2. As a consequence of Theorem 1, for any given double sequence (Aij) the sets
I(µ,ν) − lim

i,j→∞
inf Aij and I(µ,ν) − lim

i,j→∞
supAij are closed.

Theorem 4.2. Let (Aij) be a double sequence of closed subsets of X. Then for every t > 0

I(µ,ν) − lim
i,j→∞

inf Aij = {x|I(µ,ν) − lim
i,j→∞

µ(x−Aij , t) = 0 or I(µ,ν) − lim
i,j→∞

ν(x−Aij , t) = 1},

I(µ,ν)− lim
i,j→∞

supAij = {x|I(µ,ν)− lim
i,j→∞

inf µ(x−Aij , t) = 0 or I(µ,ν)− lim
i,j→∞

inf ν(x−Aij , t) = 1}

Proof. For any closed set A we have

µ(x−A, t) ≥ ε or ν(x−A, t) ≤ 1− ε⇔ A ∩ Bx(r, t) = ∅.

Suppose that I(µ,ν) − lim
i,j→∞

µ(x−Aij , t) = 0 and I(µ,ν) − lim
i,j→∞

ν(x−Aij , t) = 1. Then for every

ε > 0, t > 0
{(i, j) ∈ N× N : µ(x−Aij , t) ≥ ε or ν(x−Aij , t) ≤ 1− ε} ∈ I.

Then, for every ε > 0, t > 0 we obtain

{(i, j) ∈ N× N : Aij ∩ Bx(r, t) = ∅} ∈ I.

This means that
{(i, j) ∈ N× N : Aij ∩ Bx(r, t) 6= ∅} ∈ F(I).

That is , x ∈ I(µ,ν) − lim
i,j→∞

inf Aij .

9
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Now, we show the reverse inclusion. Let x ∈ I(µ,ν)− lim
i,j→∞

inf Aij . Then for every ε > 0, t > 0

there exists Nij ∈ NI such that Aij ∩ Bx(r, t) 6= ∅ for every ij ∈ Nij . Since

{(i, j) ∈ N× N : Aij ∩ Bx(r, t) = ∅} ⊆ N× N Nij

we have
{(i, j) ∈ N× N : Aij ∩ Bx(r, t) = ∅} ∈ I.

So, we have
{(i, j) ∈ N× N : µ(x−Aij , t) ≥ ε or ν(x−Aij , t) ≤ 1− ε} ∈ I.

That is, I(µ,ν) − lim
i,j→∞

µ(x−Aij , t) = 0 and I(µ,ν) − lim
i,j→∞

ν(x−Aij , t) = 1.

Similarly, for any closed set A we have

µ(x−A, t) < ε or ν(x−A, t) > 1− ε⇔ A ∩ Bx(r, t) 6= ∅. (4.1)

Suppose that I(µ,ν)− lim
i,j→∞

inf µ(x−Aij , t) = 0 and I(µ,ν)− lim
i,j→∞

inf ν(x−Aij , t) = 1. Then for

every ε > 0, t > 0

{(i, j) ∈ N× N : µ(x−Aij , t) < ε or ν(x−Aij , t) > 1− ε} /∈ I

By (3.2), for every ε > 0, t > 0 we obtain

{(i, j) ∈ N× N : Aij ∩ Bx(r, t) 6= ∅} /∈ I.

This means that x ∈ I(µ,ν) − lim
i,j→∞

supAij .

Now, we show the reverse inclusion. Let x ∈ I(µ,ν) − lim
i,j→∞

supAij . Then for every ε > 0, t > 0

{(i, j) ∈ N× N : Aij ∩ Bx(r, t) 6= ∅} /∈ I

we have
{(i, j) ∈ N× N : Aij ∩ Bx(r, t) = ∅} ∈ I.

Then, we have
I(µ,ν) − lim

i,j→∞
inf µ(x−Aij , t) = 0 and I(µ,ν) − lim

i,j→∞
inf ν(x−Aij , t) = 1.

�

Theorem 4.3. Let (Aij) be a double sequence of closed subsets of X. Then for every t > 0

I(µ,ν) − lim
i,j→∞

inf Aij = {x|∀(i, j) ∈ N× N, ∃yij ∈ Aij : I(µ,ν) − lim
i,j→∞

yij = x}. (4.2)

Proof. Let x ∈ I(µ,ν)− lim
i,j→∞

inf Aij be arbitrary. By Theorem 4.2, I(µ,ν)− lim
i,j→∞

µ(x−Aij , t) = 0

and I(µ,ν) − lim
i,j→∞

ν(x−Aij , t) = 1.

For every ε > 0, t > 0

{(i, j) ∈ N× N : µ(x−Aij , t) ≥
ε

2
or ν(x−Aij , t) ≤ 1− ε

2
} ∈ I.
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Since Aij is closed, for (i, j) ∈ N×N, there exists yij ∈ Aij such that µ(x−yij , t) ≤ 2µ(x−Aij , t)
and ν(x− yij , t) ≥ 2ν(x−Aij , t). Now, we define the sequence
{yij |yij ∈ Aij , (i, j) ∈ N× N}.
Then I(µ,ν) − lim

i,j→∞
yij = x}. On the contrary, assume that x belong to the right hand side set

of the equality. Then, there exists
{yij |yij ∈ Aij , (i, j) ∈ N× N} such that I(µ,ν) − lim

i,j→∞
yij = x}. Then for every ε > 0, t > 0

{(i, j) ∈ N× N : µ(x−Aij , t) ≥ ε or ν(x−Aij , t) ≤ 1− ε} ∈ I.

The inequalities µ(x− yij , t) ≥ µ(x−Aij , t) and ν(x− yij , t) ≤ ν(x−Aij , t) yields the inclusion

{(i, j) ∈ N× N : µ(x−Aij , t) ≥ ε or ν(x−Aij , t) ≤ 1− ε}

⊆ {(i, j) ∈ N× N : µ(x− yij , t) ≥ ε or ν(x− yij , t) ≤ 1− ε}. So,

{(i, j) ∈ N× N : µ(x−Aij , t) ≥ ε or ν(x−Aij , t) ≤ 1− ε}.

This means that I(µ,ν)− lim
i,j→∞

µ(x−Aij , t) = 0 and I(µ,ν)− lim
i,j→∞

ν(x−Aij , t) = 1. By Theorem

4.2, we have x ∈ I(µ,ν) − lim
i,j→∞

inf Aij .

�

The following result is well known in the theory of Kuratowski double convergence.
x ∈ lim

i,j→∞
inf Aij if and only if there exist Nij ∈ N = NIf and xij ∈ Aij for all (i, j) ∈ Nij such

that lim
(i,j)∈Nij

xij = x. For Kuratowski-IF-I-convergence, if I has property (AP), then this fact

holds.

Corollary 4.1. Let I be an admissible ideal. If the ideal I has property (AP) then

I(µ,ν) − lim
i,j→∞

inf Aij = {x|∃Nij ∈ NI∃, ∀(i, j) ∈ N× N, ∃yij ∈ Aij : lim
i,j∈Nij

yij = x}. (4.3)

Proof. Suppose that I satisfies condition (AP). Let x ∈ I(µ,ν) − lim
i,j→∞

inf Aij . Then I(µ,ν) −

lim
i,j→∞

µ(x− Aij , t) = 0 and I(µ,ν) − lim
i,j→∞

ν(x− Aij , t) = 1. By condition (AP) we have I∗(µ,ν) −

lim
i,j→∞

µ(x− Aij , t) = 0 and I∗(µ,ν) − lim
i,j→∞

ν(x− Aij , t) = 1. Then there is a set M ∈ F(I) such

that
lim

(m,n)∈M
µ(x−Amn, t) = 0 and lim

(m,n)∈M
ν(x−Amn, t) = 1.

Since Amn is closed, for (m,n) ∈M , there exists ymn ∈ Amn such that

µ(x− ymn, t) ≤ 2µ(x−Amn, t) and ν(x− ymn, t) ≥ 2ν(x−Amn, t).
Now, define the sequence {ymn|ymn ∈ Amn, (m,n) ∈M}. Then lim

(m,n)∈M
ymn = x.

On contrary, assume that x belongs to the right hand set of the equality (3.4). Let us define

zij =

{
yij , if (i, j) ∈ N× N,
arbitrary element of Aij , if (i, j) /∈ N× N.

Then I∗(µ,ν) − lim
i,j→∞

zij = x. So I(µ,ν) − lim
i,j→∞

zij = x. By Theorem 4.3, we have x ∈
I(µ,ν) − lim

ij→∞
inf Aij . �
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